Large DNA fragment sizing by flow cytometry: application to the characterization of P1 artificial chromosome (PAC) clones.
نویسندگان
چکیده
A flow cytometry-based, ultrasensitive fluorescence detection technique is used to size individual DNA fragments up to 167 kb in length. Application of this technology to the sizing of P1 artificial chromosomes (PACs) in both linear and supercoiled forms is described. It is demonstrated that this method is well suited to characterizing PAC/BAC clones and will be very useful for the analysis of large insert libraries. Fluorescence bursts are recorded as individual, dye stained DNA fragments pass through a low power, focused, continuous laser beam. The magnitudes of the fluorescence bursts are linearly proportional to the lengths of the DNA fragments. The histograms of the burst sizes are generated in <3 min with <1 pg of DNA. Results on linear fragments are consistent with those obtained by pulsed-field gel electrophoresis. In comparison with pulsed-field gel electrophoresis, sizing of large DNA fragments by this approach is more accurate, much faster, requires much less DNA, and is independent of the DNA conformation.
منابع مشابه
USE OF VECTORETTE AND SUBVECTORETTE PCR FOR THE ISOLATION OF TERMINAL SEQUENCES FROM Y EAST ARTIFICIAL CHROMOSOME (YAC) CLONES
Development of yeast artificial chromosome (Y AC) vectors, molecular cloning of large segments of chromosomal DNA, and their propagation in yeast cells has become feasible. Overlapping Y AC provides a route to the development of physical maps of entire mammalian chromosomes. A rapid method was developed to isolate and sequence termini of Y AC inserts quickly. The Y AC clone is digested wit...
متن کاملCloning and stable maintenance of DNA fragments over 300 kb in Escherichia coli with conventional plasmid-based vectors.
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) systems were previously developed for cloning of very large eukaryotic DNA fragments in bacteria. We report the feasibility of cloning very large fragments of eukaryotic DNA in bacteria using conventional plasmid-based vectors. One conventional plasmid vector (pGEM11), one conventional binary plasmid vector (pSLJ17...
متن کاملA 3-Mb sequence-ready contig map encompassing the multiple disease gene cluster on chromosome 11q13.1-q13.3.
Despite the presence of several human disease genes on chromosome 11q13, few of them have been molecularly cloned. Here, we report the construction of a contig map encompassing 11q13.1-q13.3 using bacteriophage P1 (P1), bacterial artificial chromosome (BAC), and P1-derived artificial chromosome (PAC). The contig map comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and 1 YAC clone and spans ...
متن کاملUse of PCR to screen for promoter elements in genomic DNA library clones.
We report a modified PCR strategy to screen for promoter elements of genes of interest that is based upon consecutive rounds of PCR and appropriate subcloning. Following preliminary identification and sequencing of intron 1 by standardized PCR, the application of a suited cDNA/intron primer combination renders a succeeding PCR-mediated screening of cosmid or P1-derived artificial chromosome (PA...
متن کاملBacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs.
The development of a bacteriophage P1 cloning system capable of accepting DNA fragments as large as 100 kilobase pairs (kbp) is described. The vectors used in this system contain a P1 packaging site (pac) to package vector and cloned DNA into phage particles, two P1 loxP recombination sites to cyclize the packaged DNA once it has been injected into a strain of Escherichia coli containing the P1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 24 21 شماره
صفحات -
تاریخ انتشار 1996